EAVISION Official Safety Notice:

Critical Guidelines for Smart Battery Storage

To All Valued EAVISION Partners,

Thank you for your continued support and trust in EAVISION. With the summer season approaching and temperatures rising, we must address the elevated safety risks associated with improper storage of smart batteries, particularly those that are faulty. To ensure operational safety, protect your assets, and maintain battery performance, we hereby issue these mandatory storage guidelines. Please read carefully and adhere strictly.

1. Hazards of Improper Battery Storage

1.1 Hazards of High-Temperature Environments

- Capacity Degradation: High temperatures accelerate internal chemical reactions, causing permanent, irreversible capacity loss and significantly reducing operational time.
- Increased Internal Resistance: Heat causes electrolyte decomposition, increasing internal resistance. This leads to reduced efficiency, more heat generation, and accelerated aging.
- Thermal Runaway Risk: A key trigger for thermal runaway. Excessive heat can cause uncontrollable reactions, potentially leading to fire, explosion, or violent rupture.

1.2 Hazards in High-Risk Physical Environments

- Drop and Impact Risk: Can cause casing cracks, internal damage, and leakage of corrosive electrolyte.
- Fire and Explosion Contagion Risk: Improper storage can allow a single battery incident to escalate rapidly, causing widespread damage and generating toxic fumes.

1.3 Hazards of Water Ingress

- Short Circuit and Fire Risk: Water contacting the electrolyte can cause a short circuit, generating excessive heat and posing a severe fire hazard.
- Performance Degradation & Damage: Leads to reduced capacity, corrosion,

gas release, swelling, and potential damage to the host device.

2. Correct Storage Methods

2.1 Environmental Requirements

- Temperature Control: Store between 20°C 30°C (68°F 86°F). Avoid direct sunlight and heat sources.
- **Humidity Control:** Maintain relative humidity between **45% 85%**. Use environmental controls as needed.
- **Ventilation:** Ensure the area is well-ventilated to dissipate heat and any trace gases.

2.2 Placement Requirements

- Primary Recommendation Explosion-Proof Cabinet: Store all batteries in a certified explosion-proof cabinet to contain potential incidents.
- Avoid High-Risk Stacking: Never store batteries in piles or with other equipment. Use insulated, non-conductive containers if cabinets are not available.
- **Segregated Storage:** Organize batteries by type/batch with clear labels for easy management and traceability.
- Adequate Spacing: Maintain at least 10 cm (4 inches) between batteries for airflow and to prevent contact.

2.3 Management Requirements

- Regular Inspection: Implement scheduled checks for damage, leakage, abnormal temperature, and environmental conditions.
- **Record Keeping:** Maintain detailed inventory and inspection logs.
- Personnel Training: Ensure all handling staff are trained on battery hazards, storage protocols, and emergency procedures.

3. Emergency Response Measures

If a battery shows abnormalities (overheating, smoking, fire):

- 1. **Immediate Evacuation:** Evacuate all personnel to a safe area.
- 2. **Alert Authorities:** Call local emergency services (e.g., 911, 112, 999) and notify your safety officer.
- 3. Correct Fire Suppression: Use only a Class D (dry powder) or CO2 fire

extinguisher if it is safe to do so.

WARNING: NEVER use water or foam extinguishers on battery fires.

4. **Isolate the Area:** Secure the scene to prevent access.

Compliance with these guidelines is critical for safety. Failure to adhere may void warranty coverage and increase liability.

For immediate technical or safety inquiries, please contact our support team.

Phone: +86 400 800 2872 (China)

Sincerely,

Suzhou EAVISION Robotics Co., Ltd.

Date: June 17, 2025